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Abstract— Tissue Doppler ultrasound imaging enables 
quantification of the heart function by mapping the velocity of 
the tissue in different regions within the left ventricle. This 
estimation is performed by transmitting a series of evenly spaced 
pulses at a specific direction and analyzing phase shifts in the 
returning echoes. Traditionally the received signals are sampled 
at the Nyquist rate. However, high sampling rates produce high 
volumes of data. In addition, the number of consecutive pulses 
needed for reliable velocity estimation at each orientation in the 
presence of clutter limits the size of the sectors that can be 
imaged simultaneously. In this work, compressed sensing 
techniques that were suggested for solving similar problems in 
radar signal processing are adapted to tissue Doppler ultrasound 
imaging. The proposed method reduces the amount of data 
propagated through the scanner in two ways: A non-uniformly 
spaced stream of pulses is transmitted and each received echo is 
sampled at a sub-Nyquist rate. In addition, the time needed for 
each velocity estimation is reduced. The proposed method was 
evaluated using realistic synthetic echocardiographic sequences. 

Keywords— compressed sensing (CS), ultrasound, Xampling, 
tissue Doppler imaging (TDI) 

I.  INTRODUCTION  

Tissue Doppler ultrasound imaging (TDI) enables 
estimation of local velocities of the cardiac tissue by 
transmitting a stream of pulses in a certain direction and 
estimating the velocity of the tissue from the phase shifts of 
the returning echoes. These estimates are used in order to 
quantitatively assess the cardiac function by calculating, e.g., 
the localized myocardial strain and strain rate. The time 
needed for each single velocity estimation is the coherent 
processing interval (CPI). In order to estimate the velocity of 
the tissue precisely and separate slow tissue movement from 
dominant clutter, a large number of consecutive pulses has to 
be transmitted in the same direction. The number of 
transmitted pulses per unit of time is limited by the speed of 
sound and the desired depth being examined. Therefore, there 
is an inherent tradeoff between spectral and spatial resolution. 
This limitation impedes spectral Doppler usage to a few 
measurements through the LV wall during the cardiac cycle.  

Two of the leading trends in the evolvement of ultrasound 
scanners in recent years are the increasing amount of elements 
in ultrasound probes (in particular three-dimensional probes) 
and the emergence of hand-held/wireless systems. As the 
amount of transducer elements increases so does the amount 

of data that has to be processed and stored. On the other hand, 
hand-held/wireless systems have lower resources and have to 
cope with limited bandwidth while producing high-quality 
images. As a result of these trends there is a rising interest in 
the past few years in reducing the amount of data propagated 
through the scanner and performing the reduction as close as 
possible to the analog front end. 

Compressed sensing (CS) is a signal processing framework 
that facilitates the reconstruction of signals sampled at a sub-
Nyquist rate using priors on their sparsity [1], [2]. Combining 
CS with classic sampling theorems has been the basis for 
Xampling, a framework that facilitates the reconstruction of 
real analog signals sampled at sub-Nyquist rates [3]. In[4], the 
authors suggested to model ultrasound signals detected by the 
transducer following the transmission of a single pulse as a 
sum of a relatively small number of pulses, replicas of the 
scanner’s PSF. This model was later extended in [5] and [6] to 
incorporate the beamforming process performed on sub-
Nyquist sampled element data. Similar methods were used for 
the processing of radar signals and the detection of both the 
location and the velocity of the targets while sampling the 
received signal following each transmission (fast time signal) 
at a sub-Nyquist rate [7], [8]. Recently, it was suggested that 
the number of pulses needed for each velocity estimation 
(slow time) could be effectively reduced by transmitting non-
uniformly spaced stream of pulses [13]. 

In this work we adopt the approach of [7] and [13] for 
sampling and processing of Doppler signals and apply it to 
TDI. By processing the signals within the CS framework, this 
work aims to facilitate reduced number of pulses per velocity 
estimation and reduced fast time sampling rate. In classic 
spectral Doppler processing schemes each velocity estimation 
requires the transmission of M consecutive pulses. The 
number of pulses determines the spectral resolution of the 
measurement. Therefor the entire CPI is used to produce a 
single velocity estimation.  Using the proposed method only a 
certain percentage of the pulses within each CPI are used for 
estimation of the velocity profile in each direction allowing 
the scanner to switch between several imaging orientations 
and potentially map a sector of the imaged space 
simultaneously by using the resulting time gaps.  The reduced 
fast time sampling rate reduces the amount of data propagated 
in the system and can be used for both high-end systems with 
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probes containing many elements as well as for hand-
held/wireless systems. 

II. PARAMETRIC MODEL FOR TDI SIGNALS 

First, consider an ultrasound transducer emitting a focused 
pulse train at a certain direction. When M consecutive and 
equally spaced pulses are transmitted (as in the current 
technology) the transmitted signal is: 
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where h(t) is the envelop of the transmitted narrowband pulse 
with Fourier transform H(ω) and Tprf is the pulse repetition 
interval. Next, a parametric model describing the TDI data in 
both fast-time (A-line) and slow-time (between pulses) is 
proposed. Later this model will be extended to the case in 
which a non-uniformly spaced stream of pulses is used while 
preserving the overall CPI. In this work the scatterers are 
defined in the radial coordinate system. Extending the model 
in [9] to L scatterers, the model for the received IQ signal 
assumed in this work is: 
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Here L is the number of dominant scattering elements 
contained in each A-line, c is the speed of sound in soft tissue 
and f0 is the central frequency of the transmitted pulse. In this 
model each dominant scatterer is defined by three parameters: 
its complex amplitude la  (reflecting its scattering strength), 

its depth dl (reflecting distance from the transducer) and its 
radial velocity vz,l.  

In order to simplify the model, an assumption on the 
relative velocity of the scatterers was made. Specifically, we 
assume "slow target" meaning that the velocity of the scatterer 
is negligible compared to the speed of sound in the medium. 
In addition, under this assumption, the depth of each target  
can be considered to be the same during the CPI. The 
assumption of slow targets is reasonable in TDI since the 
speed of sound in soft tissue is 1540 m/sec while the maximal 
expected left ventricle velocity is around 10 cm/s [10].  
Assuming "slow targets” leads to the following model for 
tissue Doppler signals: 
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here υl is the Doppler frequency of the dominant scatterer 
l and τl is its delay. Therefore the received signal from L 
dominant scatterers is completely defined by the 3L degrees of 

freedom (DOF):  { } 0
, ,

L

l l l l
a τ ν

=
 of the L scattering elements.  

In spectral Doppler ultrasound, where a single angle and 
depth are monitored, the velocity at the desired depth is 
estimated using M-point DFT and displayed as a short time 
Fourier transform plot. The spectral resolution obtained using 
this method is 2π/MTprf, proportional to the length of the CPI. 
The goal of this work is to accurately estimate the imaged 
velocity field while sampling at sub-Nyquist sampling 
frequencies, by estimating the 3L DOF of the L scattering 
elements. The implementation of this scheme will be 
discussed in the next section. 

III. COMPRESSED SENSING TISSUE DOPPLER IMAGING  

In order to process the received signals and estimate the 
Doppler frequencies, the received A-lines are aligned, 
normalizing the beginning of each A-line to the start of the 
matching transmitted pulse. Following alignment, a single A-

line ( )px t can be written as 
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 The Fourier series representation of a single A-line is 
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Traditionally, the received signals are sampled at the Nyquist 
rate, which is equivalent to using all the Fourier coefficients 
within the bandwidth of the transducer. Exploiting priors on the 
sparsity of the signal, only a certain fraction of these 
coefficients were used in this work, achieving sub-Nyquist 
fast-time sampling. Following [13], suppose that a non-uniform 
pulse train is used and the pth pulse is transmitted at time 
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0

P

p p
m

−

=
 is an ordered set of 

integers. In this case, the transmitted signal takes on the form: 
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Accordingly, a single A-line received by the scanner could be 
written following alignment as  
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and its Fourier series as 
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In order to estimate the 3L parameters from the received 
measurements, the range and frequency of each dominant 
scatterer are selected from a discrete grid. Following the 
notations of [13] the integers 0 1lr M≤ ≤ − satisfy 

2 /l l prfr M Tπ ν=  and the integers 0 1ls N≤ ≤ − satisfy 

/ /l l prfs N Tτ= . 

Now, the system of equations of (8) can be written in 
matrix form as 

 ( )TK P
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where X is the KxP measurement matrix with elements 
[ ]( , ) pX k p X k= . H is a diagonal matrix defined by the PSF 

of the system [ ]( ) / prfH diag H k T= . The matrices K
NF and 

P
MF  are partial DFT matrices, where K

NF  contains K out of the 

N rows of the full NxN DFT matrix and P
MF  contains P out of 

the M rows in the full MxM DFT matrix. For sub-Nyquist 
sampling in both the fast and the slow time, let K<N and P<M. 
The matrix A contains the 3L parameters in the following way: 
each non-zero elements defines the depth rl and velocity sl of a 
dominant scatterer L. The amplitude of the element is the 
estimated amplitude of the scatterer. By compensating for the 
effect of the PSF on the samples and considering   
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the following CS problem is derived 
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The sparse representation matrix A is estimated from the 
matrix Y using the matrix form of the fast iterative shrinkage 
threshold algorithm [11] solving the l1 minimization problem:  
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Fig. 1. Realistic synthetic TDI phantom based on bio-mechanical model 

where λ is a regularization parameter. Since TDI estimates the 
velocity of the cardiac tissue at a small region and does not 
attempt to evaluate the velocity of each dominant scatterer, the 
estimated range-velocity matrix is then convolved with the PSF 
of the system, similar to [6]. 

IV. VALIDATION 

Synthetic TDI data was used in order to evaluate the 
algorithm and provide realistic ground truth motion fields. 
Data was simulated with a variation of the pipeline in [12]. In 
these simulations, the geometries of the left and right 
ventricles are extracted from a clinical 3D ultrasound 
sequence (fig 1. a), while the synthetic motion is obtained by 
applying a bio-mechanical model to the segmented geometry. 
The motion model was applied to a set of point scatterers, 
from which ultrasound data was synthetized by applying the 
ultrasound simulator COLE (fig. 1 b). The pipeline was used 
to simulate TDI data from a scan line crossing the septum 
longitudinally, as done clinically to measure, e.g., longitudinal 
strain/strain-rate (e.g. [10]), cf. fig 1. b.  

The simulated dataset includes a single heartbeat imaged at 
a pulse repetition frequency of 2000Hz. The simulated pulse 
had a central frequency of 3MHz and a Gaussian envelope 
with a full width at half maximum of 2 μs. The pulse trains 
used in this work are directed to the center of the septum and 
the full reference pulse stream included M = 50 pulses per 
velocity estimation. Using the proposed processing scheme, 
subsets of 20%-80% of the received pulse-echo transmissions 
were randomly selected. From these pulse-echo subsets, 
spectral Doppler estimates were produced and compared to the 
estimations based on the full data set. Fast-time sampling rate 
of only 40% of the Nyquist frequency was used throughout 
this work in order to stay compatible with [5] and [6], 
selecting the K Fourier coefficients closest to the resonance 
frequency of the transducer. 

V. RESULTS 

 The representation matrices (A in (11)) produced by the 
algorithm for each CPI present the locations of dominant 
scatters along the A-lines and their corresponding velocities 
(fig 2.). The depth-velocity map produced using 50% of the 
pulses matches the depth-velocity map produced from the full 
pulse train (fig 2. a and b). Moreover, the depth-velocity map 
produced from only 20% of the pulses present a similar image, 
although small aliasing related artifacts can be seen (fig 2. c). 
It should be noted that for a functional modality as TDI the 
precise location of each dominant scatterer is less important 

 
Fig. 2. Depth-velocity maps produced from 100% (a), 50% (b) and only 20% 

(c) of the pulses  



  

80%60%50% 40%30%20%

0.2

0.4

0.6

0.8

1
X = 6
Y = 0.804

Pulses Used

C
o

rr
el

a
tio

n 
W

ith
 R

es
ul

t a
t N

yq
u

is
t

 
Fig. 3. Correlation coefficient R between the estimated velocities calculated 

from the partial and the full pulse trains 
than the correct estimation of the velocity profile as a function 
of depth and this estimation is stable even when a small 
percentage of the pulses are used. 

In order to quantitatively assess the performance of the 
algorithm the correlation was evaluated between the depth-
velocity maps produced using different percentages of the 
pulses and the one produced from the full dataset. The 
correlation coefficient R between the estimated velocities 
calculated from 50% of the pulses and those calculated from 
the entire dataset is 0.95. When fewer pulses are used, this 
correlation gradually decreases (fig. 3). However, with only 
20% of the pulses this correlation is still as high as 0.8. 

The pulses transmitted during a heartbeat can be divided into 
a series of partially overlapping CPIs. Spectral estimations 
from specific depths can be concatenated to produce spectral 
Doppler images equivalent to those produced using classic 
processing schemes. In fig. 4 a series of such spectral Doppler 
estimations taken from a depth of 6.2cm are presented. The 
plots show typical S' (i.e. systolic shortening) and E' (i.e. 
diastolic motion) waves. These estimations were produced 
from 100%, 50% and 30% of the pulses (fig. 4 a, b and c 
respectively). Similar to the depth-velocity maps, the estimates 
produced from 100% and 50% of the pulses are similar while 
the spectral Doppler map produced from 30% of the samples 
presents the same velocity profile with weak aliasing noise. 

VI. CONCLUSION 

In this work a parametric model for TDI signals was 
proposed along with a framework for the estimation of 
spectral Doppler maps from ultrasound signals sampled at a 
sub-Nyquist rate in both fast and slow time: only a subset of 
the fast time frequencies were used and non-uniformly spaced 
stream of pulses were transmitted. This non-uniform pulse 
stream preserves the total CPI while reducing the time needed 
for the estimation of the velocity profile at a certain 
orientation. The current performance of the proposed 
algorithm is satisfactory, and could still be improved since the 
pulse selection was not optimized. The proposed parametric 
signal model was supported by our results, validating the 
assumptions on “slow targets” and the ability to cope with  
  

  

 
Fig. 4. Spectral Doppler estimations produced from 100% (a), 50% (b) and 

30% (c) of the pulses 
 

accelerating tissue. The compressed sensing framework for 
TDI presented in this workreduces the number of pulses 
needed for velocity estimation at a given spectral resolution, 
changing the tradeoff between spectral and spatial resolution. 
The remaining time between pulses in each direction can be 
used for scanning in different directions during the same CPI. 
Future research directions include: extension of the proposed 
method to enable color Doppler and vector Doppler 
estimations and the optimization of the reconstruction 
algorithm and the selection of transmitted pulses. 
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